茨城大学公開特許

	±刀/丘+丘+≐√む◇□≖¬ぐ	始を与せ	マ业道仕生生	同吹壮罕		
発明の名称	超低抵抗率銅配線を有する半導体集積回路装置					
出願番号	特願2015-183828 (2015.9.17)					
公開番号	特開2016-164965 (2016.9.8)					
登録番号						
学内発明者	篠嶋 妥 / 大貫 仁 / 永野 隆敏					
技術分野	ナノテクノロジー・材料・計測					
発明の概要	より、超低抵抗 【解決手段】本 銅配線における 化物との親和性 不純物として特 態と結合しない 判断し、前記塩	率銅は、新記に、一次のでは、一次のでは、のでは、できます。	を有する半導 半導体集積回 を成長させる 素を、銅の結 なお、前記銅 いる状態との 引との親和性を	体集積回路装記 路装置において にあたり、銅の 品粒界の移動で との親和性を、 差を示す凝集で 、塩素酸化物の	置を提供する。 て電気メッキ及 との親和性が高 をピン止め効果 ・銅と不純物と エネルギーを算 と不純物とが紹	を向上させることに なび熱処理によって 高く、かつ、塩素酸 によって阻害する が結合している状 気出することにより き合している状態と することにより判断
説明図	不能够元素の書度(2020)	を 解 液	3N添加減あり 4N 297 41.7 1.2 0.044 0.93 278 0.031 38.4 3997 0.735 6.83 0.032 0.041 0.267 0.035 118 5.11 164 44.85 4.82 0.91 0.01	EN &	6N添加制社。 8N 214 8.4 0.23 0.01 0.05 17 0.037 0.7 436 0.057 0.49 0.019 0.007 0.026 0.0038 2.5 0.04 0.25 0.06 0.37 0.01 0.01 0.01 0.01 0.01 0.01 0.01	