茨城大学公開特許

含フッ素多環芳香族化合物とその製造方法、並びに前記含フッ素多環芳香族化合物を	
用いる有機薄膜トランジスタ、太陽電池、電子写真感光体及び有機発光素子の製造方 法	
特願2021-190716(特願2019-169266の分割)(2019.9.18)	
特開2022-33821(2022.03.02) 特許第7045746号(2022.03.24)	
,	
<u></u> 吾郷 友宏	
ナノテクノロジー・材料・計測	
【課題】様々な化学構造式と特性を有する含フッ素ナフタロシアニンの新規な化合	
物、及び該化合物を容易に、かつ高収率で合成できる製造方法、並びに前記含フッ素 ナフタロシアニンを用いる有機薄膜トランジスタ、太陽電池、電子写真感光体及び有 機発光素子の各製造方法を提供する。 【解決手段】 3環以上の共役系多環芳香族基を有し、前記共役系多環芳香族基の両末 端に位置する芳香族基のオルト位の両部位がパーフルオロアルキル基で核置換された 含フッ素ナフタロシアニンの含フッ素多環芳香族化合物、及び含フッ素単環芳香族化 合物を中間体として使用することを特徴とする含フッ素ナフタロシアニンの含フッ素 多環芳香族化合物の製造方法。	
	3 (a) 5 6 2 1 (b)